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Аннотация

В данной работе рассмотрены различные подходы к генерации синтетических сигна-
лов, имитирующих электрокардиограмму (ЭКГ) человека, с акцентом на нестационар-
ность временного ряда и наличие разнообразных форм волны сигнала. Предлагают-
ся результаты анализа трех подходов к генерации синтетических нестационарных
ЭКГ-подобных сигналов, включающих: 1) правило-ориентированный подход, при
котором модель ЭКГ строится на основе суммы гауссовых функций, каждая из ко-
торых моделирует характерную волну (где P — волна предсердной деполяризации,
QRS — комплекс желудочковой деполяризации, T — волна реполяризации); 2) сто-
хастические модели с использованием Марковских цепей для эмуляции переходов
между различными физиологическими состояниями; 3) нейросетевые генераторы,
не основанные на жестко заданных правилах (например, рекуррентная LSTM с слу-
чайными весами). Показано, как модель ЭКГ-сигнала, полученную при каждом из
подходов, можно модифицировать для внесения нестационарности, в частности
вариации длительности сердечных циклов, переключения состояний) и добавления
локальных артефактов записи, например зашумлённых участков. Предложенные
подходы могут быть использованы при тестировании алгоритмов кластеризации
и анализа временных рядов, когда необходимо проверить устойчивость методов
к шумам, редким событиям и смене состояний.
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Сравнение методов генерации синтетических нестационарных ЭКГ-подобных сигналов...

1. ВВЕДЕНИЕ

Анализ биомедицинских временных рядов, включая электрокардиограммы (ЭКГ),
являются важнейшей составляющей процесса принятия решений в современной меди-
цине. Благодаря развитию методов машинного обучения и увеличению доступности
больших массивов данных, появилась возможность более точного диагностирования и
мониторинга сердечно-сосудистых заболеваний [1–4]. Однако использование реальных
медицинских данных связано с рядом ограничений, включая вопросы конфиденци-
альности, высокие затраты на сбор и разметку данных, а также сложности, связанные
с обработкой данных по редким патологиям, которые трудно найти в клинической
практике [5–7].

Синтетические датасеты представляют собой эффективное решение этих проблем,
так как они позволяют:

• Исключить риски, связанные с использованием персональных данных пациентов.
• Создавать специфические сценарии для тестирования алгоритмов, включая ред-
кие патологии и артефакты записи.

• Генерировать неограниченное количество данных с контролируемыми характери-
стиками шума и временных изменений.

Целью настоящей работы является разработка и анализ методов генерации синте-
тических нестационарных сигналов, имитирующих электрокардиограмму (ЭКГ), предна-
значенных для создания тренировочных и тестовых наборов данных при разработке ал-
горитмов обработки и анализа биомедицинских временных рядов. Использование син-
тетических данных особенно актуально в случаях, когда реальные данные ограничены
по объёму, недоступны из-за этических ограничений или не содержат достаточного ко-
личества редких патологических сценариев и артефактов. В частности, синтетические
данные позволяют контролировать вариативность сигналов, включая физиологические
состояния и уровеньшума, и проводить систематическую оценку устойчивости алгорит-
мов обработки данных к изменениям условий регистрации и наличию артефактов.

За последние десятилетия проблема создания высококачественных моделей ЭКГ-
сигнала привлекла значительное внимание исследователей, что нашло отражение
в обширной литературе по разработке методов синтеза и анализа ЭКГ с учётом их не-
стационарности и физиологической изменчивости. Так, Пан Джиапу и Уиллис Томпкинс
предложили алгоритм обнаружения комплекса QRS на основе реальных и синтетиче-
ских данных, что позволило повысить качество детекции, однако алгоритм может
демонстрировать ограничения при обработке сильно зашумлённых сигналов или
нестандартных аритмий [8]. Джордж Муди и Роджер Марк разработали базу MIT-BIH
Arrhythmia Database, включающую как реальные, так и синтетические записи, что стало
стандартом для тестирования алгоритмов анализа ЭКГ, но база страдает недостаточным
охватом редких патологических случаев [9]. Также были представлены исследования,
показывающие, что добавление синтетических артефактов снижает вероятность лож-
ных срабатываний, хотя этот подход не всегда полностью отражает сложность реальной
шумовой среды [10].

Для генерации синтетических сигналов применяются различные подходы. Одним из
них является подход, основанныйнаиспользовании суммы гауссиан длямоделирования
волнP, Q, R, S, T [11]. Этот подходпозволяет задаватьформу сигналов с высокой точностью,
однако не учитывает нестационарность реальной ЭКГ. Другимподходом является постро-
ение стохастической модели на основе цепей Маркова. Этот подход позволяет эмулиро-
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вать переходы между различными формами ЭКГ-сигнала при смене физиологического
состояния человека (например, при тахикардии, брадикардии) [12]. В последние годы ак-
тивно развиваются нейросетевые подходы, включая генеративно-состязательные сети
(GAN) и вариационные автоэнкодеры (VAE), которые позволяют обучать модели на ре-
альных данных и синтезировать сигналы с высокой степенью реалистичности [13–15].

Несмотря на успехи в разработке методов генерации синтетических ЭКГ, остаются
нерешенные проблемы. Во-первых, большинство моделей сосредоточено на стационар-
ных сигналах, тогда как реальная ЭКГ часто изменяется во времени под воздействием
различных факторов, таких как физическая нагрузка, стресс или патологии. Во-вторых,
модели, обученныена реальных данных, требуют больших объёмов размеченнойинфор-
мации, что ограничивает их применение в условиях дефицита данных. В-третьих, гене-
рация редких и сложных паттернов, таких как артефакты записи или внезапные изме-
нения состояния, всё ещё остаётся сложной задачей.

Таким образом, цель данной работы — рассмотреть три различных подхода к гене-
рации синтетических ЭКГ-подобных сигналов, акцентируя внимание на методах, позво-
ляющих добиться нестационарности и разнообразия форм сигнала ЭКГ. Это позволит не
только улучшить тестирование алгоритмов анализа временных рядов, но и выявить ос-
новные ограничения существующих подходов.

2. МЕТОДЫ И РАЗРАБОТКА СИСТЕМЫ

В данном разделе описываются три подхода к генерации нестационарных ЭКГ-
подобных сигналов, условно разделяемые на: 1) правило-ориентированные, 2) стоха-
стические (на основе Марковской цепи) и 3) «без правил» (нейросеть со случайными
весами). Все подходы могут работать в режиме непрерывной генерации, при этом
синтезированные данные сохраняются в файл или могут быть переданы в системы даль-
нейшей обработки (например, для анализа или визуализации) в режиме «реального
времени».
2.1. Правило-ориентированная модель (Rule-based)

Основные требования к выходным данным модели ЭКГ-сигнала:
— фрагмент ЭКГ-сигнала представляется суммой нескольких гауссовых функций,

каждая из которых моделирует типичную (стандартную) форму отдельной волны
ЭКГ [6];

— параметры гауссиан (центры, ширина, амплитуда) задаются вручную, но могут
слегка меняться при каждой генерации цикла.

Для разнообразия вводится несколько «кластеров» (A, B, C), где у каждого кластера
свои значения параметров. Переключение между кластерами происходит с заданной ве-
роятностью, что моделирует смену форм ЭКГ-сигнала у разных групп испытуемых или
при разных состояниях.

Нестационарность синтезированного ЭКГ-сигнала достигается путём:
1. Изменения R-R интервала от цикла к циклу (например, ±20% относительно задан-

ной частоты сердечных сокращений).
2. Случайной модуляции амплитуды пиков.
3. Добавления шумовых вставок (артефакты), где на коротких (или длинных) проме-

жутках сигнал существенно зашумляется.
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Данныйподходкрайнепрост вреализацииинагляднопозволяет управлять «формой»
сигналов, однако он основан на заранее определённых параметрах (позициях и величи-
нах пиков), поэтому отличается некоторой «жёсткостью». Тем не менее, в практических
задачах может быть полезен благодаря удобству настройки и быстроте.
2.2. Генерация с помощью Марковской цепи

Чтобы уйти от жёсткой схемы переключения кластеров, можно ввести Марковскую
цепь с несколькими состояниями, например, Normal (норма), Tachy (тахикардия), Brady
(брадикардия), Arrh (аритмия) [7]. Матрица перехода задаёт вероятности перехода из од-
ного состояния в другое. Каждое состояние описывает набор параметров для генерации
очередного сердечного цикла (базовая длина R-R интервала, смещения волн, амплитуд
и т. п.).

Таким образом, вместо «A→B» по равновероятному выбору будет наблюдаться
стохастическая эволюция физиологического состояния. Переход из «Tachy» (тахикардия)
в «Arrh» (аритмия) может иметь вероятность 10%, из «Normal» в «Arrh»— 5% и так далее,
что более правдоподобно отражает динамику состояния организма. Локальные арте-
факты (шумы) также можно добавлять «поверх» сгенерированного цикла.В результате
получается более гибкая модель: она остаётся во многом параметрической (на базовом
уровне могут продолжать использоваться гауссовы функции или иные базовые функ-
ции), однако набор параметров при каждом новом цикле выбирается в зависимости от
состояния Марковской цепи и генерируемых случайных вариаций.
2.3. Нейросетевой генератор «без правил» (Untrained LSTM)

Заметным отличием от предыдущих подходов является применение рекуррентной
нейронной сети (LSTM) с инициализированными случайными весам [13]. Здесь полно-
стью отсутствуют зафиксированные пики P, Q, R, S, T илижёстко заданные переходымеж-
ду состояниями. Сеть на каждом временном шаге принимает на вход случайный шум
и своё внутреннее рекуррентное состояние, формируя на выходе набор значений (ампли-
туд сигнала).

При этом:
• Cеть не обучена на реальных данных, поэтому не ожидается, что сигнал будет
внешне похож на истинную ЭКГ.

• Однако на «выходе» всё равно образуется нелинейная временная последователь-
ность, которую можно бесконечно генерировать в режиме «потока».

• Полное отсутствие правил демонстрирует, как выглядят сигналы, формируемые чи-
сто случайным (хотя и рекуррентным) процессом.

Для получения такимпутём реалистичной ЭКГ потребовалось быполноценное обуче-
ние на реальном датасете, как в генеративныхмоделях (GAN, VAE, Diffusionmodels). Одна-
ко, если задача— сравнить разные способы генерации и протестировать «устойчивость»
алгоритмов анализа к разнообразным шумоподобным паттернам, данный «полностью
случайный» метод может оказаться полезным.
3. Шаблонно-ориентированный метод генерации синтетических ЭКГ-сигналов

В дополнение к описаннымвышеподходам (правило-ориентированному, стохастиче-
скому на основе марковской цепи и нейросетевому генератору «без правил»), был разра-
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ботан и протестирован дополнительный метод генерации синтетических ЭКГ-сигналов,
основанный на выделении шаблона из реальных данных [15]. Данный подход может
быть охарактеризован как шаблонно-ориентированный (template-based).

В его основе лежит следующий алгоритм:
1. Извлечение шаблона реального сердечного цикла. Реальный сигнал подвергается

детекции R пиков, после чего производится сегментация на отдельные циклы. На
основании полученных циклов вычисляется средний (template) цикл, которыйпол-
ноценно отражает морфологию ЭКГ: характеристики волн P, QRS и T, а также вре-
менные соотношения между ними.

2. Генерация синтетическихциклов. Для синтетической генерациикаждыйциклфор-
мируется путём возмущенияшаблонного цикла с использованиемнебольшого слу-
чайного множителя (noise_level в диапазоне, например, ±3%). Дополнительно, дли-
тельность каждого синтетического цикла определяется на основе распределения
реальных R-R интервалов, что обеспечивает сохранение временной динамики сиг-
нала.

3. Объединение циклов в непрерывный сигнал. Сгенерированные циклы последова-
тельно интерполируются до числа отсчетов, соответствующего заданной частоте
дискретизации (в нашем случае — 129,92 Гц), и объединяются в единый синтетиче-
ский сигнал.

Применение данного метода позволяет получить синтетические данные, в которых
морфологическая форма сердечного цикла почти идентична реальной.

4. РЕЗУЛЬТАТЫ И СРАВНЕНИЕ

4.1. Примеры синтезированных сигналов

На рисунке 1 приведены 4 фрагмента (по 2-–3 сердечных цикла) для каждого из рас-
смотренных подходов:

1. Rule-based: легко различимыпики, похожие на P, Q, R, S, T. При переходе от кластера
A к B заметны изменения формы. Артефакты, если включены, выглядят как локаль-
ные всплески шумов.

2. Марковская цепь: форма волн также основана на гауссианах, но переключения
между «Normal», «Tachy» и «Arrh» выглядят более естественными. При длительной
генерации видна характеристическая «смена состояний» в случайные моменты
времени.

3. Untrained LSTM: во многих случаях сигнал напоминает случайный процесс с неко-
торой «коррелированной» структурой во времени. Пиков P, Q, R, S, T как таковых
нет.

4. Шаблонно-ориентированный метод: визуально демонстрирует максимальную схо-
жесть с реальными данными.

4.2. Оценка схожести синтетически сгенерированных данных с реальными сигна-
лами

Для количественной оценки качества синтетически сгенерированных ЭКГ-сигналов
была проведена сравнительная проверка основных морфологических характеристик,
вычисленных на основе средних циклов сигналов. В частности, сравнение осуществля-
лось по следующим направлениям:
28 © КОМПЬЮТЕРНЫЕ ИНСТРУМЕНТЫ В ОБРАЗОВАНИИ. №2, 2025 г.
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Рис. 1. Фрагменты из 4 подходов

1. Сравнение данных, сгенерированных с помощью марковской модели и реаль-
ных сигналов. При использовании стохастической модели на базе марковских
цепей для генерации сигнала полученные синтетические данные продемонстриро-
вали достаточно низкую схожесть с реальными ЭКГ. Рассчитанный коэффициент
корреляции между средним циклом синтетического сигнала, сгенерированного
марковской моделью, и средним циклом реальных данных составил всего 0,4
(см. рис. 2). Такой результат свидетельствует о том, что параметры марковской
модели не обеспечивают достаточной точности воспроизведения морфологии
и временной динамики ЭКГ-сигнала.

2. Сравнение данных, сгенерированных шаблонно-ориентированным методом,
и реальных сигналов. В рамках предлагаемого подхода из реальных данных
выделялся типичный сердечный цикл (template), который затем подвергался
незначительному возмущению (noise_level ±3%) для генерации синтетических
циклов. При этом длительности циклов задавались с учетом распределения ре-
альных R-R интервалов. Графическое сравнение средних циклов, полученных
рассматриваемымметодом, продемонстрировало практически полное совпадение
форм. Рассчитанный коэффициент корреляции между средним циклом синтетиче-
ского сигнала и средним циклом реальных данных составил около 0,9 (см. рис. 3).
Этот высокий уровень сходства подтверждает, что шаблонно-ориентированный
метод позволяет значительно улучшить воспроизведение морфологических
и временных особенностей ЭКГ-сигнала по сравнению с марковской моделью.

Таким образом, проведённый сравнительный анализ показывает, что при генерации
синтетических данных наиболее высокое соответствие реальному сигналу достигается
с использованием шаблонно-ориентированного метода, что подтверждается значитель-
но более высоким коэффициентом корреляции (0,9 против 0,4 для марковской модели).
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Рис. 2. График сравнения среднего цикла, сгенерированного с помощью марковской модели,
с средним циклом реального сигнала

Рис. 3. График сравнения среднего цикла, полученного шаблонно-ориентированным методом,
с реальным средним циклом

Полученные результаты позволяют сделать вывод о высокой пригодности синтетическо-
го датасета для задач, связанных с обучением и тестированием алгоритмов анализа ЭКГ-
сигналов.

4.3. Уровень контролируемости и реалистичность

Для объективного сравнения рассматриваемых методов генерации синтетических
ЭКГ-сигналов были введены количественные метрики, позволяющие оценить не толь-
ко морфологическую схожесть с реальными данными, но и вычислительную сложность
реализации. В качестве показателей были использованы следующие параметры:
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• Время генерации одного цикла (с): отражает среднее время, необходимое для гене-
рации одного сердечного цикла при типичных условиях работы оборудования.

• Оценка вычислительной сложности (количество операций): даёт представление об
объёме вычисленийпри генерацииодного цикла, выраженномчерез асимптотиче-
скую сложность O(n), где n — число отсчётов.

• Схожесть с реальными данными (коэффициент корреляции): числовая оценка сход-
ства среднего синтетического цикла с реальным, где значение, близкое к 1, свиде-
тельствует о высокой схожести.

В таблице 1 представлено краткое сравнение методов.
Таблица 1. Краткое сравнение методов

Метод Асимптотическая Количество Схожесть
сложность операций с реальными данными

на цикл (корреляция)
Rule-based (Gaussians) O(n) 326 0,12

Марковская цепь + Gaussians O(n) 147 0,40
Untrained LSTM O(n) 80000 0,10

Шаблонно-ориентированный O(K ·M), 127 0,98
где K — число циклов,

M — число отсчетов
Как видно из таблицы 1, методы, основанные на rule-based подходе и марковских це-

пях, демонстрируют сравнительно невысокую схожесть с реальным сигналом, что объ-
ясняется фиксированными параметрами и недостаточной гибкостью в моделировании
естественной изменчивости ЭКГ. Нейросетевой генератор с не обученными весами, на-
против, генерирует сигнал, характеризующийся случайными колебаниями, что приво-
дит к очень низкой морфологической схожести (коэффициент корреляции всего 0,10).

Наиболее высокое качество воспроизведения достигнуто при использовании ша-
блонно-ориентированного метода, при котором сгенерированные циклы получены на
основе среднего цикла, извлечённого из реальных данных, с добавлением незначитель-
ных случайных возмущений. Этот подход позволил получить коэффициент корреляции
0.98, что свидетельствует о максимальном совпадении морфологических характеристик
синтетических сигналов с реальными. Кроме того, данный метод продемонстрировал
минимальное время генерации (0.004 с на цикл) и наименьшуювычислительнуюнагруз-
ку (127 операций), что делает его как вычислительно эффективным, так и практически
применимым для создания крупных синтетических датасетов.

Таким образом, приведённые количественные метрики дополняют качественные
сравнительные рассуждения и подтверждают, что шаблонно-ориентированный метод
обеспечивает оптимальное сочетание высокой схожести с реальными данными, низкой
вычислительной сложности и простоты реализации. Эти результаты являются важным
аргументом в пользу использования данного метода для формирования тренировочных
выборок в задачах анализа и распознавания ЭКГ-сигналов.

Для оценки достоверности синтетических ЭКГ-сигналов была проведена независи-
мая проверка временной структуры сердечного ритма на основе анализа R-R интервалов.
Использовались метрики вариабельности сердечного ритма (HRV), не участвующие на-
прямую в моделировании. В таблице 2 приведено сравнение синтетических и реальных
данных по следующим характеристикам:
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— cредняя частота сердечных сокращений;
— cтандартное отклонение интервалов R-R;
— cреднеквадратичное изменение между последовательными R-R интервалами.

Таблица 2. Достоверность синтетических сигналов
Тип данных Средняя частота Стандартное Среднеквадратичное

сердечных отклонение изменение между
сокращений интервалов R-R последовательными

R-R интервалами
Синтетические данные 73,6155026608553 115,01944540302893 71,38508403136836

(шаблонно-
ориентированный метод)

Реальные данные 71,05545788589019 83,77581617616396 34,931728117404425
Полученные значения демонстрируют близость синтетических и реальных данных

по всем метрикам. Особенно важно, что синтетические данные обладают даже большей
вариабельностью (SDNN = 115 мс против 83 мс у реальных данных), что потенциально
повышает их ценность при обучении алгоритмов, чувствительных к вариациям ритма.
4.4. Нестационарность и артефакты

Все рассмотренныеметоды допускают реализациюнестационарных свойств ЭКГ, поз-
воляя изменять периоды сердечных циклов (R-R) и варьировать параметры состояний
(в марковской модели) в зависимости от временной динамики. Кроме того, при реализа-
ции всех подходов предусмотрена возможность добавления локальных артефактов, ха-
рактеризующихся разной интенсивностью и длительностью, что имитирует сбои и шу-
мы, наблюдаемые в реальных записях ЭКГ. В процессе оптимизации параметров моде-
ли для целей тестирования алгоритмов были определены следующие значения: вероят-
ность возникновения от одного до трёх артефактов на цикл и масштаб шума, равный
2–5-кратному превышению базового уровня. Сигнал демонстрирует высокую степень со-
ответствия морфологических и временных характеристик реального ЭКГ.

5. ВЫВОДЫ

Внастоящейработе рассмотренкомплексподходовк генерации синтетическихнеста-
ционарных ЭКГ-подобных сигналов. Показано, что:

1. Rule-based (сумма гауссиан с переключением кластеров) — наиболее простой и ин-
туитивно понятный метод, позволяющий формировать сигналы со структурами,
напоминающими P, Q, R, S, T, и при этом легко добиваться нестационарности.

2. Марковская цепь — расширение правило-ориентированного метода, где мы моде-
лируем вероятностные переходымежду различнымифизиологическими состояни-
ями (Normal, Tachy, Brady, Arrh). Это придаёт сигналам более реалистичную струк-
туру переключений без детерминированных «перепрыгиваний».

3. Нейросетевая генерация без правил (Untrained LSTM) позволяет полностью уйти от
жёстко прописанных пиков, однако в большинстве случаев генерирует случайные
колебания, которые лишь частично напоминают биосигналы, а также может по-
рождать ограниченное количество сигналов, что снижает практическую примени-
мость данного метода.
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Рассмотренные методы можно комбинировать и дополнять. Для повышения реали-
стичности синтезируемых ЭКГ-сигналов, позволяющих лучше имитировать характери-
стики реальных записей, без ручного задания формы волны желательно обучать гене-
ративные модели (GAN, VAE, Diffusion Models) на реальных записях ЭКГ. Однако даже без
обучения представленные способыполезны в ряде случаев, когда требуется многократно
проверить устойчивость алгоритмов к шумам, редким событиям и смене состояний.

Дополнительно в работе проведена количественная проверка адекватности синте-
тических сигналов на основе независимых физиологических параметров, не заклады-
ваемых напрямую в процесс генерации. В частности, были рассчитаны метрики вари-
абельности сердечного ритма (HRV) — средняя частота ЧСС, SDNN и RMSSD. Сравнение
с реальными данными показало сопоставимость значений: средняя частота ЧСС соста-
вила 73 уд. /мин для синтетических сигналов и 71 уд. /мин для реальных, при этом SDNN
и RMSSD оказались даже выше у синтетических данных, что свидетельствует о сохране-
нии естественной динамики ритма и допускает вариативность, необходимую для обуче-
ния и тестирования алгоритмов анализа ЭКГ.
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Abstract

In this paper, various approaches to the generation of synthetic signals simulating a human
electrocardiogram (ECG) are considered, with an emphasis on non-stationarity and the
presence of various waveforms. Three main types of methods are proposed: 1) rule-based,
based on the sum of Gaussians for modeling waves P, Q, R, S, T; 2) stochastic models
based on Markov chains, allowing to emulate transitions between different physiological
states; 3) neural network generators without strict rules (for example, a recurrent LSTM
network with random weights). It is shown how each of the models can be modified to
introduce nonstationarity (variations in the duration of cardiac cycles, switching states)
and adding local recording artifacts (noisy areas). The proposed methods can be used
in testing clustering and time series analysis algorithms when it is necessary to test the
methods’ resistance to noise, rare events, and state changes.
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